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Abstract

A recently proposed concept for a ring-based multi-axis rate sensor requires that two in-plane modes of
vibration and two out-of-plane modes of vibration of a ring each have identical natural frequencies. This
work proposes a practical mass trimming approach for eliminating the frequency splits between these four
natural frequencies for an initially imperfect ring. Given that the modes of an imperfect ring are unlikely to
consist of pure in-plane and pure out-of-plane modes, the proposed trimming approach takes account of
the cross-coupling that exists between the in-plane and out-of-plane modes. The proposed approach
consists of three stages: (i) eliminate the frequency split between a pair of predominantly in-plane modes
and a pair of predominantly out-of-plane modes; (ii) eliminate the cross-coupling between the in-plane and
out-of-plane modes; (iii) match the in-plane and out-of-plane natural frequencies. Numerical examples
demonstrating and validating the approach are provided.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The important drivers into the research and development of rate sensors are improvements in
the accuracy, efficiency and useful measurement capability. A recently proposed concept for
achieving such improvements is the multi-axis rate sensors; that is, a rate sensor that can detect
the rotational speed of an object about more than one orthogonal axis simultaneously. Such
sensors have the potential to reduce the need for increased numbers of single axis sensors and
provide useful redundancy if a sensor fails.
The design of ring-based rate sensors is based around the fact that perfectly axi-symmetric rings

have natural frequencies that occur in degenerate pairs and modes of vibration that are spatially

ARTICLE IN PRESS

*Corresponding author. Fax: 0115-951-3800.

E-mail address: stewart.mcwilliam@nottingham.ac.uk (S. McWilliam).

0022-460X/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.12.032



orthogonal and have indeterminate positions. Based on the planar form of rings, it is usual to refer to
the modes of the ring as being either in-plane, consisting of radial and tangential displacements, or
out-of-plane, consisting of axial (out-of-plane) and twisting displacements. To understand the
principle of operation of a multi-axis sensor [1,2], consider the modes of vibration of a perfect ring
shown in Fig. 1. The two pairs of modes on the left are in-plane modes and the two pairs of modes on
the right are out-of-plane modes, both shown with 2 and 3 nodal diameters. If one of the in-plane
modes is excited (the so-called carrier mode), angular rate about the polar axis will couple the in-
plane (carrier) mode with the companion in-plane (response) mode. Applied rate about a diametral
axis within the plane of the ring will couple the in-plane (carrier) mode with one or both of the out-
of-plane (response) modes. Similarly, if one of the out-of-plane (carrier) modes is excited, angular
rate about a diametral axis will couple the out-of-plane (carrier) mode with one or both of the in-
plane (response) modes. More generally, it can be shown that the in-plane and out-of-plane modes
only couple when nO ¼ nI71 [1,2], where nI is the number of in-plane nodal diameters and nO is the
number of out-of-plane nodal diameters. The coupling mechanism between the carrier and response
modes is the Coriolis force and the sensitivity of the sensor is highly dependent on the natural
frequencies of the modes concerned. To achieve maximum sensitivity of rate measurements, it is
necessary to have the natural frequencies of the carrier mode and all of the response modes matched
to within 0.01%. It is trivial to choose dimensions of a perfect ring to achieve this. However, in
reality, imperfections due to dimensional variations and material non-uniformities exist which
produce small frequency splits and severely diminish the performance.
The effect of imperfections is to introduce frequency splits both within a pair of ‘‘in-plane’’ and

a pair of ‘‘out-of-plane’’ modes, and between the in-plane and out-of-plane modes. In addition,
the imperfections fix the orientations of the modes within the ring. In previous work [1,2], the
modes were assumed to be either in-plane or out-of-plane, even in the presence of imperfection.
Strictly speaking this is not true, since any imperfection only slightly misaligned from the
mid-surface of the plane of the ring will induce coupling between the in-plane and out-of-plane
modes, modifying the mode shapes so that they each consist of a combination of in-plane and
out-of-plane contributions. For a vibrating rate sensor, any imperfection-induced coupling can
degrade the rate measurements, since the principle of operation is based on the coupling being due
to the applied rate (through the Coriolis forces) only. Imperfect rings with high degrees of cross-
coupling are a particular concern in the development of multi-axis rate sensors.
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Fig. 1. The maximum displacements of the in-plane (nI ¼ 2 and 3) and out-of-plane (nO ¼ 2 and 3) generalized co-ordinates.
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A number of researchers have reported the development of multi-axis rate sensors. Fujita et al.
[3] proposed a two-axis sensor based on an oscillating disk that could measure rate about the axes
within the plane of the disk. Work by Eley, Fox, McWilliam and Fell, in conjunction with BAE-
Systems [1,2,4–6], has investigated the use of a ring-shaped rate sensor that can detect rate about
two or three axes. The basic equations of motion have been derived and solved, and successful
prototypes have been demonstrated. Gallacher et al. [7] have also reported work on ring sensors.
These publications highlight the necessity for good frequency matching between modes, requiring
trimming procedures to reduce (ideally eliminate) the effects of imperfection, but have not
considered, in detail, the influence of imperfections, or how to compensate for them. The purpose
of this paper is to investigate the effect of mass imperfections on the natural frequencies and
orientations of the modes of a perfect ring and to develop a trimming process that can eliminate
the aforementioned frequency splits from an imperfect ring by the addition, or removal, of mass.
The effect of imperfections on the in-plane modes of rings and cylinders has been studied by a

number of authors [8–20]. Some papers [9,10,13,19,20] model imperfection in terms of masses and
springs attached to the ring, while others [11,15–17] consider more general shape variations. As any
manufacturing process has inherent errors that will introduce imperfections, it is necessary to consider
methods for eliminating the effect of those imperfections. Useful papers by Fox [13,14] propose and
demonstrate practical trimming procedures that can compensate for the effects of small imperfections
and reduce the frequency split to an acceptable level for a single pair of modes. Rourke et al. [19,20]
have extended this method to eliminate the frequency splits for multiple pairs of in-plane modes.
A similar approach will be taken here to investigate the effect of imperfections and to develop a

trimming process to eliminate the effects of imperfections from four modes (one in-plane pair and one
out-of-plane pair) with similar natural frequencies simultaneously. Section 2 will consider the effect of
imperfection masses on the mode shapes and natural frequencies of a perfect ring, and also the cross-
coupling between the in-plane and out-of-plane modes. In Section 3 a trimming procedure will be
developed. This will consist of three stages: (i) the magnitude, radial and angular positions of the
trimming masses will be determined to eliminate the frequency splits of the predominantly in-plane
and out-of-plane modes; (ii) the axial positions of the same masses will be determined to eliminate the
in-plane/out-of-plane coupling; (iii) the natural frequencies of the purely in-plane and out-of-plane
trimmed modes will be matched by the addition of a second set of trimming masses. Section 4 will
present some numerical examples to demonstrate and validate the derived trimming process.

2. Effect of imperfection masses on the modes of a perfect ring

Before outlining the effect of imperfection masses on a perfect ring, it is important to note that
the perfect rings under consideration are thin. This ensures that the effects of rotary inertia and
shear deformation are negligible and so these terms will not be considered in this analysis.

2.1. The in-plane and out-of-plane displacement of a ring

Previous work by the authors has considered the in-plane (tangential and radial) displacements
ðu;wÞ of a thin ring [19,20]. In this paper, the out-of-plane motion will also be considered. Using
Kirkhope [21] the out-of-plane modes of a perfect ring consist of an axial displacement v and an
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angular displacement y; due to twisting about the centroidal axis of the ring section. These
displacements are shown in Fig. 2.
In the present work, the displacement of the centre-line of the ring will be defined using four

generalized co-ordinates, Qi; where i ¼ I1 and I2 correspond to the two orthogonal in-plane
modes of a perfect ring that have nI nodal diameters and i ¼ O1 and O2 correspond to the two
orthogonal out-of-plane modes that have nO nodal diameters. As has been shown previously [22],
the radial w and tangential u displacements associated with in-plane generalized co-ordinates QI1;
QI2 with nI nodal diameters take the form

wI1

uI1

( )
¼ QI1ðtÞ

nI sin nI ðf� jnI Þ

cos nI ðf� jnI Þ

( )
; ð1Þ

wI2

uI2

( )
¼ QI2ðtÞ

nI cos nI ðf� jnI Þ

�sin nI ðf� jnI Þ

( )
; ð2Þ

and the axial displacement v and twisting y about the centroidal axis associated with a pair of out-
of-plane generalized co-ordinates QO1; QO2 with nO nodal diameters take the form

vO1

yO1

( )
¼ QO1ðtÞ

1

�n2Ox

( )
cos nOðf� jnOÞ; ð3Þ

vO2

yO2

( )
¼ QO2ðtÞ

�1

n2
Ox

( )
sin nOðf� jnOÞ; ð4Þ

where x ¼ ðð1þ mÞ=ð1þ n2
OmÞÞ=R and m ¼ GCT=ðEIyÞ: E; G and Iy are the Young’s modulus, shear

modulus and second moment of area of a section of the ring, CT ¼ ch3L3=ðh2 þ L2Þ and c is a
function of the ratio of h to L (radial thickness to axial length) that has values between 0.28 and
0.33 (see Table 8–18 of [22]). R is the mean radius of the ring (see Fig. 2).
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Fig. 2. (a) and (b) Dimensions and general co-ordinates of a ring.
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The spatial angles jnI and jnO have been included to account for any possible misalignment
between the in-plane and out-of-plane generalized co-ordinates and an arbitrary reference. It can be
argued that, as the generalized co-ordinates can be chosen arbitrarily, these spatial angles are
unnecessary. However, the generalized co-ordinates will be chosen so that each of the predominantly
in-plane modes is aligned with one of the in-plane generalized co-ordinates and similarly each of the
predominantly out-of-plane modes is aligned with one of the out-of-plane generalized co-ordinates.
The reason for this choice is to simplify the analysis of the effect of imperfections and the trimming
process. The introduction of spatial angles has been used in previous trimming processes [13,19,20].
Figs. 1(a) and (b) show the maximum displacements of the in-plane and out-of-plane

generalized co-ordinates for nI and nO equal to 2 and 3, and include the undeformed ring and the
f ¼ 0 axis as reference points. The generalized co-ordinates have been chosen such that if QI1 is
orientated at angular position f; the orthogonal co-ordinate QI2 is orientated at fþ p=2nI and
similarly for QO1 and QO2: In Figs. 1(a) and (b), QI1 and QO1 are aligned with each other at the
arbitrary origin (in the sense that the corresponding radial and axial displacements have a cosine
variation) but in general this will not be the case.
Taking into account the fact that the twisting y produces displacement in the radial and axial

direction for points not on the centre-line of the ring cross-section (see Fig. 3), it can be shown
that the displacement of a general point in the cross-section of the ring can be expressed as

u

v

w

8><
>:

9>=
>; ¼QI1

sin nI ðf� jnI Þ

0

nI cos nI ðf� jnI Þ

8><
>:

9>=
>;þ QI2

cos nI ðf� jnI Þ

0

�nI sin nI ðf� jnI Þ

8><
>:

9>=
>;

þ QO1 cos nOðf� jnOÞ

0

1þ zn2Ox

�yn2Ox

8><
>:

9>=
>;

þQO2 sin nOðf� jnOÞ

0

1þ zn2Ox

�yn2Ox

8><
>:

9>=
>;; ð5Þ

where y and z are the axial and radial positions of the point under consideration.
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Fig. 3. Displacement of a general point of the ring.
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2.2. General equations of motion of a perfect ring with attached point masses

The equations of motion for a perfect ring with attached point masses are derived using
Lagrange’s equations, and for this purpose it is necessary to consider the kinetic and strain
energies of the structure.
It can be shown that the kinetic energy T of a perfect ring can be expressed as [23]

T ¼ 1
2
rhLRp ð1þ n2

I Þð ’Q
2
I1 þ ’Q2

I2Þ þ 1þ
ðh2 þ L2Þ

12
n4Ox

2


 �
ð ’Q2

O1 þ ’Q2
O2Þ


 �
¼MI1

’Q2
I1 þ MI2

’Q2
I2 þ MO1

’Q2
O1 þ MO2

’Q2
O2; ð6Þ

and the kinetic energy of the attached imperfection masses Tm can be expressed as

Tm ¼ 1
2

mI1
’Q2

I1 þ mI2
’Q2

I2 þ mO1
’Q2

O1 þ mO2
’Q2

O2 þ 2mI1O1
’QI1

’QO1

þ2mI1O2
’QI1

’QO2 þ 2mI2O1
’QI2

’QO1 þ 2mI2O2
’QI2

’QO2

 !
; ð7Þ

where

mI1 ¼
X

i

miðsin
2 nI ðfi � jnI

Þ þ n2
I cos

2 nI ðfi � jnI
ÞÞ; ð8Þ

mO1 ¼
X

i

mið1þ 2hin
2
Oxþ ðh2

i þ L2
i Þn

4
Ox

2Þ cos2 nOðfi � jnO
Þ; ð9Þ

mI2 ¼
X

i

miðcos2 nI ðfi � jnI
Þ þ n2I sin

2 nI ðfi � jnI
ÞÞ; ð10Þ

mO2 ¼
X

i

mið1þ 2hin
2
Oxþ ðh2

i þ L2
i Þn

4
Ox

2Þ sin2 nOðfi � jnO
Þ; ð11Þ

mI1O1 ¼ �nI n2
Ox
X

i

miLi cos nI ðfi � jnI
Þ cos nOðfi � jnO

Þ; ð12Þ

mI1O2 ¼ �nI n2
Ox
X

i

miLi cos nI ðfi � jnI
Þ sin nOðfi � jnO

Þ; ð13Þ

mI2O1 ¼ nI n2Ox
X

i

miLi sin nI ðfi � jnI
Þ cos nOðfi � jnO

Þ; ð14Þ

mI2O1 ¼ nI n2Ox
X

i

miLi sin nI ðfi � jnI
Þ sin nOðfi � jnO

Þ: ð15Þ

In these equations, r is the density of the ring, hi and Li are the radial and axial locations of the ith
attached imperfection mass from the centre of rotation, see z and y; respectively in Fig. 3, and fi is
the angular location of the ith attached imperfection mass.
To determine expressions for the strain energy of the ring, it is assumed that the strain energies

due to the in-plane and out-of-plane displacements can be calculated independently. It can be
shown that the strain energy due to in-plane deformation can be expressed as [13]

S0nI
¼

EhLbp
2Rð1� n2Þ

n2
I ð1� n2I Þ

2ðQ2
I1 þ Q2

I2Þ ¼
KI1

2
Q2

I1 þ
KI2

2
Q2

I2; ð16Þ
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where b ¼ h2=12R2 and v is the Poisson ratio. Using Ref. [21] it can be shown that the strain
energy due to out-of-plane deformation can be expressed by

S0nO
¼

EIy

2R

Z 2p

0

1

R

@2v

@f2
� y


 �2

dfþ
CT G

2R

Z 2p

0

@y
@f

þ
1

R

@v

@f


 �2

df; ð17Þ

where the effects of twisting have been included. Substituting Eqs. (3) and (4) into Eq. (17) gives

S0nO
¼

EIyp
2R3

n2Oðn
2
O � 1Þ2m

ð1þ n2
OmÞ

ðQ2
O1 þ Q2

O2Þ ¼
KO1

2
Q2

O1 þ
KO2

2
Q2

O2: ð18Þ

As in previous mass trimming processes [13,19,20], it will be assumed that the mass imperfections
do not affect the stiffness of the ring.
Combining Eqs. (6) and (7) to obtain the total kinetic energy and Eqs. (16) and (18) to obtain

the total strain energy, and substituting the resulting expressions into Lagrange’s equation
together with a standard viscous dissipation function yields the following equations of motion:

ðMþmÞ .Qþ C ’Qþ KQ ¼ F; ð19Þ

where

M ¼ diag½MI1;MI2;MO1;MO2�;

K ¼ diag½KI1;KI2;KO1;KO2�;

C ¼ diag½CI1;CI2;CO1;CO2�;

m ¼

mI1 0 mI1O1 mI1O2

0 mI2 mI2O1 mI2O2

mI1O1 mI2O1 mO1 0

mI1O2 mI2O2 0 mO2

2
6664

3
7775; ð20–23Þ

F ¼ ðFI1 FI2 FO1 FO2 Þ
T; Q ¼ ðQI1 QI2 QO1 QO2 Þ

T; ð24; 25Þ

where diag½a1; a2;y; an� represents an n � n diagonal matrix whose ijth entry is ak when i ¼ j ¼ k

and 0 when iaj: Here Fk and Ck are the external forces and damping terms associated with
generalized co-ordinates Qk:
It can be seen from the off-diagonal terms in the mass matrix m that, in general, the in-plane

and out-of-plane generalized co-ordinates are coupled. Using Eqs. (12)–(15) it can be seen that the
coupling due to an individual imperfection mass is dependent on the size and location of the mass,
and on the displacement of the ring at the point of attachment. Furthermore, the off-diagonal
mass terms will affect the natural frequencies and modes of vibration of the ring. The influence of
the coupling on the natural frequencies and mode shapes will be discussed with reference to an
example in what follows.

2.3. Natural frequencies and modes of vibration for an example imperfect ring

To illustrate the effect of imperfection masses on the natural frequencies and mode shapes of
the ring, a numerical example will now be considered consisting of a pair of imperfection masses
attached to a perfect ring. The dimensions and physical properties of the ring are chosen to be in
agreement with the prototype multi-axis ring that was designed by Eley [2] to produce natural
frequencies of approximately 4 kHz for the nI ¼ 2 in-plane modes and the nO ¼ 3 out-of-plane
modes. The density of the ring r ¼ 8250 kg=m3; the mean radius R ¼ 0:0415 m; the radial
thickness h ¼ 0:003 m; the axial length L ¼ 0:00105 m; and the value of m ¼ 0:3: From these
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properties the mass matrixM of the perfect ring (see Eq. (20)) can be calculated. In the results that
follow, the stiffness is chosen to produce an out-of-plane natural frequency o0O of 4004 Hz and
an in-plane natural frequency o0I between 4000 and 4010 Hz for the perfect ring. Thus the
stiffness matrix K of the perfect ring is generated by using Eq. (21) and by noting that the natural
frequencies of the perfect ring are given by o2 ¼ S=T :
The effect on the perfect ring of a pair of imperfection masses of 0.1% and 0.15% of the mass of

the perfect ring, attached at angular positions of 0	 and 30	; respectively, and at radial and axial
positions of �h=2 and L=2 from the centre-line of the ring will be considered. Figs. 4(a)–(d) shows
the eigenvectors, whilst Fig. 4(e) shows the natural frequencies for these specified imperfections.
Figs. 4(a)–(d) represent the relative contributions of the two in-plane and two out-of-plane

generalized co-ordinates for each mode. It can be seen that there are no modes that are purely in-
plane or purely out-of-plane as the natural frequencies of the perfect ring are varied. Instead, all
four mode shapes are a combination of in-plane and out-of-plane contributions. This is
particularly apparent in regions where the natural frequencies of the modes are close together (see
Fig. 4(e)).
Fig. 4(e) shows the natural frequencies of the ring. The solid curves represent the exact natural

frequencies, whilst the dashed curves indicate the natural frequencies of the ring if there was no
coupling between the in-plane and out-of-plane displacement, i.e., if the off-diagonal terms mI1O1;
mI1O2; mI2O1 and mI2O2 are neglected in Eq. (23). It can be seen that there are some combinations
of in-plane and out-of-plane frequencies of a perfect ring for which a single ‘‘in-plane’’ natural
frequency and a single ‘‘out-of-plane’’ natural frequency are the same when the imperfection
masses are added. For these situations, the natural frequencies cannot be determined accurately
by neglecting the off-diagonal mass terms. Similarly, the modes at those points cannot be
considered as being purely ‘‘in-plane’’ or purely ‘‘out-of-plane’’.
For regions where the natural frequencies are not close together (for example, the regions close

to 4000 and 4010 Hz) it can be seen that the mode shapes correspond to either in-plane or out-of-
plane modes, meaning that the equations of motion are effectively uncoupled. In addition, in these
regions, the effect of the in-plane/out-of-plane coupling on the natural frequencies of the modes
becomes negligible, and the modal behaviour is greatly simplified. It is in these regions that
previous analysis of the effect of imperfections on the modes of a ring was performed.

2.4. Some comments on the development of a multi-axis trimming procedure

Previous work on frequency trimming has considered trimming in-plane and out-of-plane
modes that are uncoupled. Given that these mode types are effectively uncoupled when their
natural frequencies are sufficiently separated, a sensible strategy in the development of a practical
trimming procedure is to: (i) consider a ring in which the in-plane and out-of-plane natural
frequencies are sufficiently separated that the in-plane/out-of-plane coupling can be ignored, and
trim the in-plane and out-of-plane modes separately; (ii) eliminate the in-plane/out-of-plane
coupling; (iii) trim the uncoupled ring so that the in-plane natural frequencies are equal to the out-
of-plane natural frequencies. To achieve steps (i) and (ii) it is necessary to consider the effects of
imperfection masses on: (i) the natural frequencies of the ring when the coupling is neglected; and
(ii) the coupling between the in-plane and out-of-plane modes. These are considered in the
following sections.
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Fig. 4. (a)–(d) In-plane and out-of-plane displacements of the four modes of an imperfect ring that has been formed by

the addition of a pair of imperfection masses. (e) Natural frequencies of the four modes of an imperfect ring that has

been formed by the addition of a pair of imperfection masses.
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2.5. Natural frequencies for an imperfect ring, neglecting in-plane/out-of-plane coupling

Neglecting the in-plane/out-of-plane coupling, the natural frequencies for a perfect ring with
attached point masses can be determined using Eq. (19), but with the off-diagonal terms mI1O1;
mI1O2; mI2O1 and mI2O2 set to zero in Eq. (23). Noting that Eq. (19) is uncoupled, it is a reasonably
simple task to calculate the natural frequencies analytically, and it can be shown that the in-plane
and out-of-plane natural frequencies are given by

o2
I1
I2
¼ o2

0I

1þ n2I
ð1þ n2I Þ þ

P
i mi½ð1þ n2

I Þ7ðn2
I � 1Þ cos 2nI ðfi � jnI

Þ�=M0

 !
; ð26Þ

o2
O1
O2
¼ o2

0O

ð1þ h2þL2

12
n4Ox

2Þ

ð1þ h2þL2

12
n4Ox

2Þ þ
P

i mið1þ 2hin
2
Oxþ ðh2i þ L2

i Þn
4
Ox

2Þð17cos 2nOðfi � jnO
ÞÞ=M0

 !
;

ð27Þ

where o0I and o0O are the in-plane and out-of-plane natural frequencies for the perfect ring,
such that

o2
0I ¼

KI1

MI1
¼

KI2

MI2
¼

Ebn2
I ð1� n2I Þ

2

R2rð1� n2Þð1þ n2
I Þ
; ð28Þ

o2
0O ¼

KO1

MO1
¼

KO2

MO2
¼

2EIyp
M0R3

n2
Oðn

2
O � 1Þ2m

ð1þ n2OmÞð1þ
h2þL2

12
n4Ox

2Þ
: ð29Þ

In addition, it can be shown [13] that the orientations of the in-plane and out-of-plane modes (jnI

and jnO in Eqs. (1)–(4)) with respect to some general reference point can be determined, and are
given by

tan 2nIjnI
¼
P

i mi sin 2nIfiP
i mi cos 2nIfi

; ð30Þ

tan 2nOjnO
¼
P

i mið1þ 2hin
2
Oxþ ðh2

i þ L2
i Þn

4
Ox

2Þ sin 2nOfiP
i mið1þ 2hin

2
Oxþ ðh2

i þ L2
i Þn

4
Ox

2Þ cos 2nOfi

: ð31Þ

Eqs. (26)–(31) are expressions for the natural frequencies and mode orientations for a perfect ring
with attached point masses, assuming that there is no coupling between the in-plane/out-of-plane
modes. These equations will be used to formulate part of the proposed trimming procedure later.

2.6. In-plane/out-of-plane coupling for an imperfect ring

To be able to develop a practical trimming process it is necessary to eliminate the effects of
cross-coupling between the in-plane and out-of-plane modes. To be able to achieve this it is
necessary to be able to quantify the amount of cross-coupling that exists, and this is considered
here.
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In practice, the influence of cross-coupling is most apparent in a vibrating gyroscope when
harmonic excitation applied to an in-plane mode (say) results in a harmonic out-of-plane
response, when no rate is applied. For this reason, it is convenient to consider the response of the
generalized co-ordinates when a harmonic excitation is applied to the system.
Applying a harmonic excitation at frequency o to Eq. (19), the steady state response of the

generalized co-ordinates can be expressed as

QI1 ¼ qI1 sinðot �CI1Þ; QI2 ¼ qI2 sinðot �CI2Þ;

QO1 ¼ qO1 sinðot �CO1Þ; QO2 ¼ qO2 sinðot �CO2Þ; ð32–35Þ

where the Ck terms take account of the phase differences between the generalized co-ordinates
and the excitation force. Substituting Eqs. (32)–(35) into the equation of motion (19) produces
equations of the following form

fðo2
k � o2Þ sinðot �CkÞ þ 2ookgk cosðot �CkÞgqk

�
o2

Mk þ mk

ðmkd1qd1 sinðot �Cd1Þ þ mkd2qd2 sinðot �Cd2ÞÞ ¼
Fk

Mk þ mk

sinot; ð36Þ

where if k ¼ I1 or I2; d ¼ O and if k ¼ O1 or O2; d ¼ I ; mkd1 ¼ md1k and mkd2 ¼ md2k: In
addition, ok is given by Eqs. (26) and (27) and 2okgk ¼ Ck=ðMk þ mkÞ:
Solving Eq. (36) it can be shown that the magnitude and phase of the generalized co-ordinates

are given by

qk ¼

ðo2
k � o2ÞFk þ o2

ðo2
k � o2Þmkd1qd1 cosCd1 � 2ookgkmkd1qd1 sinCd1

þ ðo2
k � o2Þmkd2qd2 cosCd2 � 2ookgkmkd2qd2 sinCd2

 ! !2

þ 2ookgkFk þ o2
ðo2

k � o2Þmkd1qd1 sinCd1 þ 2ookgkmkd1qd1 cosCd1

þ ðo2
k � o2Þmkd2qd2 sinCd2 þ 2ookgkmkd2qd2 cosCd2

 ! !2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

1=2

ðMk þ mkÞððo2
k � o2Þ2 þ 4o2o2

kg
2
kÞ

;

ð37Þ

tanCk ¼

2ookgkFk þ o2
ðo2

k � o2Þmkd1qd1 sinCd1 þ 2ookgkmkd1qd1 cosCd1

þ ðo2
k � o2Þmkd2qd2 sinCd2 þ 2ookgkmkd2qd2 cosCd2

 !

ðo2
k � o2ÞFk þ o2

ðo2
k � o2Þmkd1qd1 cosCd1 � 2ookgkmkd1qd1 sinCd1

þ ðo2
k � o2Þmkd2qd2 cosCd2 � 2ookgkmkd2qd2 sinCd2

 !: ð38Þ

It is clear from Eqs. (37) and (38) that the generalized co-ordinates are coupled, and that it is
difficult to obtain exact analytical expressions for the generalized co-ordinates that are
independent of the other generalized co-ordinates—i.e., Eqs. (37) and (38) are non-linear
algebraic equations in terms of the generalized co-ordinates and the associated phase angles. An
iterative solution for the generalized co-ordinates and phase angles is feasible and is used here to
develop an approximate analytical solution to these equations. This is achieved by using a two-
step iterative solution procedure. The first step assumes that the coupling has no effect on the
solution, and yields an approximate (first order) solution for the generalized co-ordinates and
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phase angles. This solution is equivalent to neglecting the ‘‘o2ðyÞ’’ terms appearing on the right
hand sides of Eqs. (37) and (38). The second step involves using these first order solutions in the
right hand side of Eqs. (37) and (38) to determine a new approximate solution. Performing this
operation it can be shown that the generalized co-ordinates and the associated phase angles can be
expressed as

qk ¼
ðH2

3k þ H2
4kÞ

1=2

ðMk þ mkÞfðo2
k � o2Þ2 þ 4o2o2

kg
2
kg
; tanCk ¼

H4k

H3k

; ð39; 40Þ

where

H3k ¼H1k þ
mkd1

ðMd1 þ md1Þ
o2ððo2

k � o2ÞH1d1 � 2ookgkH2d1Þ

ðo2
d1 � o2Þ2 þ 4o2o2

d1g
2
d1

þ
mkd2

ðMd2 þ md2Þ
o2ððo2

k � o2ÞH1d2 � 2ookgkH2d2Þ

ðo2
d2 � o2Þ2 þ 4o2o2

d2g
2
d2

; ð41Þ

H4k ¼H2k þ
mkd1

ðMd1 þ md1Þ
o2ð2ookgkH1d1 þ ðo2

k � o2ÞH2d1Þ

ðo2
d1 � o2Þ2 þ 4o2o2

d1g
2
d1

þ
mkd2

ðMd2 þ md2Þ
o2ð2ookgkH1d2 þ ðo2

k � o2ÞH2d2Þ

ðo2
d2 � o2Þ2 þ 4o2o2

d2g
2
d2

; ð42Þ

H1k ¼ ðo2
k � o2ÞFk; H2k ¼ 2ookgkFk: ð43; 44Þ

Eqs. (39) and (40) indicate how the generalized co-ordinates depend on their associated ok terms,
the imperfections masses attached to the ring and the frequency of the applied driving forces o: By
considering only a single force, it is possible to evaluate the degree of in-plane/out-of-plane
coupling that exists in each mode of the imperfect ring. To achieve this for a practical vibrating
rate sensor it is necessary to consider the practical arrangement of drive forces and sensors that
are used. This will be considered next.

2.7. In-plane/out-of-plane coupling of a practical sensor

In a typical sensor structure, sensors measuring the radial motion of the ring determine the
displacements of the in-plane modes and sensors measuring the motion perpendicular to the plane
of the ring determine the displacements of the out-of-plane modes. There will be a reference point
within the ring that is fixed by the structure of the ring. The position of the in-plane and out-of-
plane modes, and so the positions of the generalized co-ordinates, will be determined with
reference to that point using these in-plane and out-of-plane sensors.
If the in-plane and out-of-plane sensors are positioned at angular locations fpi and fpo;

respectively (see Fig. 5), then the radial and axial displacements ‘‘seen’’ by the sensors can be
expressed as

w ¼wI1QI1 þ wI2QI2

¼ nI ðqI1 sinðot �CI1Þ cos nI ðfpi � jnI
Þ � qI2 sin ðot �CI2Þ sin nI ðfpi � jnI

ÞÞ

¼W sinðot �CW Þ; ð45Þ
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v ¼ vO1QO1 þ vO2QO2

¼ qO1 sinðot �CO1Þ cos nOðfpo � jnO
Þ � qO2 sinðot �CO2Þ sin nOðfpo � jnO

Þ

¼V sinðot �CV Þ; ð46Þ

where

W ¼ nI

ðqI1 cosCI1 cos nI ðfpi � jnI
Þ � qI2 cosCI2 sin nI ðfpi � jnI

ÞÞ2

þ ðqI1 sinCI1 cos nI ðfpi � jnI
Þ � qI2 sinCI2 sin nI ðfpi � jnI

ÞÞ2

 !1=2

; ð47Þ

tanCW ¼
qI1 sinCI1 cos nI ðfpi � jnI

Þ � qI2 sinCI2 sin nI ðfpi � jnI
Þ

qI1 cosCI1 cos nI ðfpi � jnI
Þ � qI2 cosCI2 sin nI ðfpi � jnI

Þ
; ð48Þ

V ¼
ðqO1 cosCO1 cos nOðfpo � jnO

Þ � qO2 cosCO2 sin nOðfpo � jnO
ÞÞ2

þ ðqO1 sinCO1 cos nOðfpo � jnO
Þ � qO2 sinCO2 sin nOðfpo � jnO

ÞÞ2

 !1=2

; ð49Þ

tanCV ¼
qO1 sinCO1 cos nOðfpo � jnO

Þ � qO2 sinCO2 sin nOðfpo � jnO
Þ

qO1 cosCO1 cos nOðfpo � jnO
Þ � qO2 cosCO2 sin nOðfpo � jnO

Þ
: ð50Þ

In general, fpiajnI
or jnI

þ p=2nI and fpoajnO
or jnIO

þ p=2nO and so the sensors will measure
a combination of the displacements along both of the relevant generalized co-ordinates (in-plane
generalized co-ordinates with the in-plane sensor and out-of-plane generalized co-ordinates with
the out-of-plane sensor). As the modes and the generalized co-ordinates are orientated at the same
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position this means that, in general, the sensors will measure a combination of the displacements
of more than one mode. However, if the sensors are aligned with the position of one of the
relevant generalized co-ordinates then only the displacement of the corresponding mode (such as
the first in-plane mode) will be measured and none of the other mode (the second in-plane mode)
will be detected.
Eqs. (45) and (46) enable the magnitude of the coupling between the in-plane and out-of-plane

generalized co-ordinates to be assessed. This process can be simplified further by considering
specific forces associated with specific generalized co-ordinates. For example, consider an applied
force FI1 with the forces associated with the other three generalized co-ordinates set equal to zero.
For this case, Eqs. (45) and (46) simplify to

W ¼
nI FI1 cos nI ðfpi � jnI

Þ

ðMI1 þ mI1Þððo2
I1 � o2Þ2 þ 4o2o2

I1g
2
I1Þ

1=2
; ð51Þ

V ¼
FI1o2

ðMI1 þ mI1Þððo2
I1 � o2Þ2 þ 4o2o2

I1g
2
I1Þ

1=2

�
ðBI1O1 cosCO1 � BI1O2 cosCO2Þ

2

þ ðBI1O1 sinCO1 � BI1O2 sinCO2Þ
2

 !1=2

; ð52Þ

where

tanCOj ¼ 2o
oI1gI1ðo

2
Oj � o2Þ þ oOjgOjðo

2
I1 � o2Þ

ðo2
I1 � o2Þðo2

Oj � o2Þ � 4o2oI1oOjgI1gOj

 !
; ð53Þ

BkO1 ¼
mkO1 cos nOðfpo � jnO

Þ

ðMO1 þ mO1Þððo2
O1 � o2Þ2 þ 4o2o2

O1g
2
O1Þ

1=2
; ð54Þ

BkO2 ¼
mkO2 sin nOðfpo � jnO

Þ

ðMO2 þ mO2Þððo2
O2 � o2Þ2 þ 4o2o2

O2g
2
O2Þ

1=2
: ð55Þ

There are a number of features of Eqs. (51) and (52) that will be relevant when considering the
trimming of the frequency splits of an imperfect ring with the additional aim of eliminating in-
plane/out-of-plane coupling. The main point to note is the dependence of Eq. (52) on the mass
terms, mI1O1 and mI1O2: These terms will have a significant effect on the in-plane/out-of-plane
coupling. For example, if both of these terms could be reduced to zero there would be no
coupling. Also, if the net contribution from the mass terms was zero in Eq. (52), then there would
be no coupling. Expressions for the mass terms were given in Eqs. (12–15) and it can be seen that
the terms are linearly dependent on the mass and the axial positions of the imperfection masses
but are independent of their radial positions. Therefore, it is possible to modify the degree of in-
plane/out-of-plane coupling for specific imperfection masses by varying the axial positions of the
masses only. This will be significant in the trimming process.
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The effect on the in-plane/out-of-plane coupling is illustrated in Fig. 6 by varying the axial
positions of three imperfection masses (of 0.1%, 0.2% and 0.3% of the mass of the perfect ring at
0	; 35	 and 70	; respectively and radial distances of �h=2). If the axial position of a specific mass
is not being varied it is kept constant at L=2: To produce Fig. 6, the ring was excited at the natural
frequency of the predominantly in-plane mode. It can be seen that varying the axial positions of
the different masses will have different effects on the coupling. In particular, there is an
arrangement of imperfection masses (m1 at approximately �2L=5 and m2 and m3 at L=2) that
produces no in-plane/out-of-plane coupling. Thus, it is possible that the imperfections may be
arranged to produce no in-plane/out-of-plane coupling and so inversely it is implied that trimming
masses can be applied to nullify the effect of the imperfections.
In summary, it has been shown that the angular positions of the in-plane and out-of-plane

sensors will have a significant effect on the level of in-plane/out-of-plane coupling that is
measured at different driving frequencies. It has also been shown that the axial distances of the
imperfections from the centre-line of the cross-section of the ring have a significant effect on the
coupling and that it is possible for there to be combinations of imperfections masses offset from
the centre-line that do not introduce an overall in-plane/out-of-plane coupling.

3. Trimming process

In Section 2, the effect of imperfection masses on the in-plane and out-of-plane modes of a
perfect ring was considered. It was shown that the imperfection masses introduce frequency splits
and fix the orientations of the in-plane and out-of-plane modes. In addition, it was shown that
imperfections not located within the central plane of the ring induce cross-coupling between the
in-plane and out-of-plane modes, and that the modes can no longer be treated as being purely in-
plane or purely out-of-plane. Indeed, it is possible that the modes are a complex combination of
in-plane and out-of-plane contributions.
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Mass trimming is the attachment or removal of mass to eliminate or at least reduce the
frequency splits between the modes of interest. The analysis described in Section 2 can be used to
achieve this by identifying the magnitudes and locations of equivalent imperfection masses that
give the same frequency splits and mode orientations as those observed for an imperfect ring
[13,19,20]. By removing these masses from the imperfect ring it is possible to eliminate the
frequency splits.
In what follows, a three stage trimming procedure is proposed. Stage 1 considers the trimming

of a pair of predominantly in-plane and a pair of predominantly out-of-plane modes. Stage 2
eliminates the in-plane/out-of-plane coupling. Stage 3 matches the in-plane and out-of-plane
natural frequencies. Each of these stages is considered in turn as follows.

3.1. Stage 1. Eliminating the frequency splits between a pair of predominantly in-plane and a pair of

predominantly out-of-plane modes of vibration

Eqs. (26) and (30) relate attached masses and their angular positions to the split natural
frequencies and orientations of predominantly in-plane modes of an imperfect ring. Using
previous work by the authors, these equations can be re-written asX

i

mi sin 2nI ðfi � jnI
Þ ¼ 0;

X
i

mi cos 2nI ðfi � jnI
Þ ¼ MlnI

; ð56; 57Þ

where lnI
¼ ðo2

I1 � o2
I2Þð1þ n2I Þ=ððo

2
I1 þ o2

I2Þð1� n2
I ÞÞ and M is the mass of the imperfect ring.

A similar pair of equations can be produced for predominantly out-of-plane modes from
Eqs. (27) and (31), such thatX

i

mið1þ 2hin
2
OxÞ sin 2nOðfi � jnO

Þ ¼ 0; ð58Þ

X
i

miðð1þ 2hin
2
OxÞ cos 2nOðfi � jnO

Þ � 2hin
2
OxLnO

Þ ¼
X

i

miXi ¼ MLnO
; ð59Þ

where LnO
¼ ðo2

O2 � o2
O1Þ=ðo

2
O1 þ o2

O2Þ and it has been assumed that second order products of the
radial and axial positions in Eqs. (27) and (31) are negligible. This is reasonable provided that the
ring is thin.
To eliminate the frequency splits from a single pair of predominantly in-plane and a single pair

of predominantly out-of-plane modes of vibration, the equivalent imperfection masses and their
angular positions can be found by solving Eqs. (56)–(59) for mi; hi and fi: These equations can be
solved in a number of different ways. For example, the radial or angular positions can be set as
variables or pre-determined constants, as could the magnitudes of the masses. As can seen by
comparing previous studies [19,20], the simplest analytical solution can be determined by leaving
only one variable, the magnitude. In this case, one possible solution to Eqs. (56)–(59) is

m1 ¼ �
XN

i¼2

mi

sin 2nI ðfi � jnI
Þ

sin 2nI ðf1 � jnI
Þ
; m2 ¼ �

XN

i¼3

mi
z1i

z12
; ð60; 61Þ

m3 ¼
MlnI

z12 �
PN

i¼4 miwi

w3
;
XN

i¼4

miki ¼ MtX; ð62; 63Þ
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where zij; wi; ki and tX are constant terms defined in Appendix A (see Eqs. (A.1–A.4)) and N is the
total number of trimming masses to be applied to the ring.
As noted in Ref. [20], there are an infinite number of solutions to Eqs. (60)–(63) if the total

number of trimming masses is greater than the number of equations to be solved. One possible
solution to Eq. (63) for 4pipN is

mi ¼
M

ðN � 3Þ
tX
ki

: ð64Þ

Using Eqs. (60)–(64) the frequency splits and orientations of a single pair of predominantly in-
plane modes and a single pair of predominantly out-of-plane modes can be represented
equivalently as N imperfection masses attached at predetermined positions to a perfect ring.
Performing the inverse procedure, the frequency splits can be eliminated simultaneously by the
removal of the same imperfection masses. This procedure will be demonstrated later through
numerical example. However, before doing this, elimination of the in-plane/out-of-plane coupling
needs to be considered.

3.2. Stage 2. Elimination of the in-plane/out-of-plane coupling

If no coupling exists in the imperfect ring that is to be trimmed, it is a simple process to prevent
coupling from entering the system. It can be seen from the off-diagonal coupling terms in Eq. (23),
that cross-coupling can be avoided by applying the masses on the central plane of the ring, i.e., at
Li ¼ 0: In practice, this can be achieved by dividing each mass in half and applying one half at L=2
and the other half at �L=2: However, in a typical ring coupling will exist and will need to be
eliminated.
To determine the coupling and so eliminate it, it is necessary to consider the amplitudes of the

in-plane (Eq. (47)) and the out-of-plane (Eq. (49)) displacements of the ring in response to
externally applied forces. These equations need to be solved to ensure that there is a minimum
amount of in-plane/out-of-plane coupling.
In a practical device, the coupling will be identified by the application of external forces in either

an in-plane or an out-of-plane direction and by comparing the responses of the in-plane and out-
of-plane motions. The forces will be applied along specific generalized co-ordinates so as to
simplify Eqs. (47)–(50). If a mass lies at a nodal position of the in-plane generalized co-ordinate
along which an excitation force is applied, the effect of that mass on the coupling will not be
observed and so would appear not to exist. To detect that mass, a second force will need to be
applied to the other in-plane generalized co-ordinate. Hence, two forces will need to be applied to
ensure that the effects of all of the imperfection masses are observed. Similarly, the motion of the
ring in the coupled direction (i.e., the out-of-plane direction if an in-plane force is applied) needs
to be measured at two distinct positions just in case the masses lie at nodal positions of the
coupled out-of-plane generalized co-ordinates. For these reasons, four combinations of external
forces and orthogonal sensor positions are required to fully assess the effect of all of the mass
imperfections on the in-plane/out-of-plane coupling. For the following analysis, it will be assumed
that in-plane forces will be applied and two combinations of out-of-plane sensor position are
required for each in-plane force.
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The response of the ring in the in-plane and the out-of-plane directions to a force associated
with the first in-plane generalized co-ordinate FI1 has already been considered, see Eqs. (51) and
(52). A similar pair of equations can be generated for a force FI2: The ratio of the out-of-plane to
in-plane motion for applied forces FI1 and FI2 is

V ðFI1;fpoÞ

W ðFI1;fpiÞ
¼

o2

nI cos nI ðfpi � jnI
Þ

ðBI1O1 cosCO1 � BI1O2 cosCO2Þ
2

þ ðBI1O1 sinCO1 � BI1O2 sinCO2Þ
2

 !1=2

; ð65Þ

V ðFI2;fpoÞ

W ðFI2;fpiÞ
¼

o2

nI sin nI ðfpi � jnI
Þ

ðBI2O1 cosCO1 � BI2O2 cosCO2Þ
2

þ ðBI2O1 sinCO1 � BI2O2 sinCO2Þ
2

 !1=2

; ð66Þ

where BI1O1 and BI2O1 are given by Eq. (54) and BI1O2 and BI2O2 are given by Eq. (55). These
terms depend upon the angular locations of the out-of-plane sensors fpo; see Fig. 5. Thus,
Eqs. (65) and (66) can be used to generate the four equations that need to be solved to represent
the measured out-of-plane/in-plane coupling V=W ; as determined by in-plane and out-of-plane
sensors at angular positions of fpi and fpo; respectively, as a set of equivalent imperfection
masses. Once these imperfection masses have been calculated, their removal will eliminate the
coupling. A general solution and a more specific solution to the problem of calculating the
equivalent imperfection masses will be outlined next.
(i) The general solution: The magnitude, angular positions and radial positions of the trimming

masses were determined in Section 3.1. Consequently, only the axial positions of these trimming
masses need to be considered here. A general solution can be determined by finding the minimum
of

X
fpo

1�
W ðFI1;fpiÞ

V ðFI1;fpoÞ
o2

nI cos nI ðfpi � jnI
Þ

ðBI1O1 cosCO1 � BI1O2 cosCO2Þ
2

þ ðBI1O1 sinCO1 � BI1O2 sinCO2Þ
2

 !1=2
0
@

1
A

2

þ
X
fpo

1�
W ðFI2;fpiÞ

VðFI2;fpoÞ
o2

nI sin nI ðfpi � jnI
Þ

ðBI2O1 cosCO1 � BI2O2 cosCO2Þ
2

þ ðBI2O1 sinCO1 � BI2O2 sinCO2Þ
2

 !1=2
0
@

1
A

2

;

ð67Þ

where the summation is over the out-of-plane sensors. The in-plane and out-of-plane
displacements, W ðFk;fpiÞ and V ðFk;fpoÞ; are measured at two distinct out-of-plane angular
positions of fpo and fpo þ p=2nO: The second angle has been chosen because the angle between
the out-of-plane generalized co-ordinates is p=2nO:
The only variables in Eq. (67) are the axial positions of the masses and these terms appear as

linear contributions in the Bk terms. In general, the minimum of Eq. (67) can be solved either
graphically or by using numerical search techniques. However, for a practical arrangement of a
sensor, it is possible to obtain an algebraic solution, as discussed next.
(ii) An algebraic solution: It is possible to obtain an algebraic solution to Eq. (67) when the out-

of-plane generalized co-ordinates and the out-of-plane sensors are aligned ðfpo ¼ jnO
Þ: In this

case, an individual out-of-plane sensor will only measure the displacement along a single out-of-
plane generalized co-ordinate, significantly simplifying Eqs. (65) and (66).
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Before considering this simplification method in detail, it is worthwhile noting that two
different methods can be used to align the out-of-plane generalized co-ordinates and the out-of-
plane sensors. By introducing deliberate imperfections into the structure of the ring, the modes
can be aligned at, or close to, a particular angular position. Analysis of a method for doing this is
briefly described in Appendix I of [20]. This method would have to be used if the angular positions
of the sensors are fixed by the manufacturing process with respect to the physical structure of the
ring, for example by being etched onto the surface. If the manufacturing process does not fix the
angular positions of the sensors, the alignment of the generalized co-ordinates and the sensors can
be achieved easily by simply rotating the ring until the correct alignment is achieved. The
prototype ring and sensor structure designed by Eley [2] can be aligned in this way.
Whichever method is used to align the out-of-plane generalized co-ordinates and sensors, the

ratio of the out-of-plane displacements to in-plane displacements measured by the two sensors in
response to in-plane forces of FI1 and FI2 can be determined from Eqs. (65) and (66), by
substituting fpo ¼ jnO

and fpo ¼ jnO
þ p=2nO: Since the mass terms mk involve a linear

summation (see Eqs. (12)–(15)), Eqs. (65) and (66) can be rewritten in the form of four linear
equations as X

i

GkðmiÞLi ¼ Wk; ð68Þ

where k ¼ I1O1; I1O2; I2O1 and I2O2 and Gk and Wk are defined in Appendix A (see
Eqs. (A.5)–(A.12)).
In a similar manner to that described in Section 3.1, when determining the magnitudes of the

trimming masses from Eqs. (56)–(59), there are an infinite number of solutions that can be
obtained from Eq. (68) and one possible solution set is

L1 ¼
WI1O1 �

PN
i¼2 LiGI1O1ðmiÞ

GI1O1ðm1Þ
; ð69Þ

L2 ¼
ðWI1O2GI1O1ðm1Þ � WI1O1GI1O2ðm1ÞÞ �

PN
i¼3 LiðGI1O1ðm1ÞGI1O2ðmiÞ � GI1O1ðmiÞGI1O2ðm1ÞÞ

ðGI1O1ðm1ÞGI1O2ðm2Þ � GI1O1ðm2ÞGI1O2ðm1ÞÞ
;

ð70Þ

L3 ¼
W1 �

PN
i¼4 LiG1ðmiÞ

G1ðm3Þ
; ð71Þ

XN

i¼4

LiðG1ðm3ÞG2ðmiÞ � G2ðm3ÞG1ðmiÞÞ ¼ W2G1ðm3Þ � W1G2ðm3Þ; ð72Þ

where G1; G2; W1 and W2 are defined in Appendix A (see Eqs. (A.13) and (A.14)).
Similarly, if the number of trimming masses N is greater than 4, there are an infinite number of

solutions to Eq. (72), one of which is that for 4pipN is

Li ¼
W2G1ðm3Þ � W1G2ðm3Þ

ðN � 3ÞðG1ðm3ÞG2ðmiÞ � G2ðm3ÞG1ðmiÞÞ
: ð73Þ
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In summary, if the out-of-plane displacement of the ring can be measured by a pair of out-of-
plane sensors that are aligned with the out-of-plane generalized co-ordinates, the in-plane/out-of-
plane coupling can be represented ‘‘equivalently’’ by positioning the imperfection masses at the
axial positions given by Eqs. (69)–(73). Inversely, by removing the trimming masses from these
positions, the in-plane/out-of-plane coupling can be eliminated from the system. This will be
demonstrated later using a numerical example.

3.3. Stage 3. Matching the in-plane and out-of-plane natural frequencies

In the analysis performed so far, the elimination of the frequency splits and the in-plane/out-of-
plane coupling has been produced by the use of trimming masses. A similar method can also be
applied to eliminate the difference between the in-plane and out-of-plane natural frequencies.
Assuming that the frequency splits of the in-plane and out-of-plane modes have been eliminated
successfully, it is a simple task to use Eqs. (26) and (27) to determine the trimmed natural
frequencies resulting from Stage 1. These are given by

o2
0I ¼

2Mo2
I1o

2
I2

ðM �
P

i miÞðo2
I1 þ o2

I2Þ
; o2

0O ¼
2ðM þ 2n2

Ox
P

i mihiÞo2
O1o

2
O2

ðM �
P

i miÞðo2
O1 þ o2

O2Þ
: ð74; 75Þ

Comparing these equations it can be seen that the in-plane and out-of-plane natural frequencies
could have been trimmed to the same perfect natural frequency by carefully selecting the radial
positions hi of the trimming masses. Letting o0I ¼ o0O and combining Eqs. (74) and (75) indicates
that this is achieved if X

i

mihi ¼
M

2n2Ox
o2

I1o
2
I2

o2
O1o

2
O2

ðo2
O1 þ o2

O2Þ
ðo2

I1 þ o2
I2Þ

� 1


 �
: ð76Þ

If the radial positions of the trimming masses had not been considered to be constant in Section
3.1, the natural frequencies of the predominantly in-plane and predominantly out-of-plane modes
could have been deliberately trimmed to the same frequency by simultaneously solving Eqs. (56)–
(59) and (76). The reason why this was not proposed earlier was because of the practical
constraint that mass can only be added or removed from the surface of the ring. Previously, it was
necessary to have the axial positions of the trimming masses as being variable to allow the in-
plane/out-of-plane coupling to be eliminated. To achieve this in practice, the trimming masses will
need to be applied in pairs on opposite faces of the ring at particular angular positions to replicate
the addition of a single trimming mass inside the ring. Allowing the radial position to be variable
as well, the pair of trimming masses will need to be split into a set of four trimming masses applied
at the four corners of the cross-section of the ring. This increases the complexity of the trimming
process and increases the possibility of errors entering the trimming process.
Another reason for not matching the natural frequencies earlier was due to a consideration of

the effect of errors in the trimming process. If the trimming masses are not applied in the correct
proportions at the correct locations, errors will be introduced into the system, which have the
potential to increase the in-plane/out-of-plane coupling. If the natural frequencies of the
predominantly in-plane and out-of-plane modes are sufficiently far apart, this coupling can be
compensated for easily. However, if the natural frequencies are close together, the modes may
become complex combinations of in-plane and out-of-plane contributions and it will be more
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difficult to compensate for the errors. For this reason, it is preferable that o0I and o0O are not
close together.
The matching of the in-plane and out-of-plane natural frequencies for a pair of unsplit

frequencies and no in-plane/out-of-plane coupling will now be outlined. As before, the trimming
will be performed by the application of trimming masses and so a modified set of the equations
used in Sections 3.1 and 3.2 will be used here. It is necessary to consider the effect that the
trimming masses will have on the natural frequencies and in-plane/out-of-plane coupling so that a
set of masses can be chosen that introduce no frequency splits and no in-plane/out-of-plane
coupling.
For example consider Eqs. (56)–(59), which are used to trim the natural frequencies of the in-

plane and out-of-plane modes in Stage 1. Setting oI1 ¼ oI2 and oO1 ¼ oO2 in these equations
gives X

i

mi sin 2nI ðfi � jnI
Þ ¼ 0;

X
i

mi cos 2nI ðfi � jnI
Þ ¼ 0; ð77; 78Þ

X
i

mið1þ 2hin
2
OxÞ sin 2nOðfi � jnO

Þ ¼ 0;

X
i

mið1þ 2hin
2
OxÞ cos 2nOðfi � jnO

Þ ¼ 0: ð79; 80Þ

The aim of the trimming process is to eliminate the difference between the in-plane and out-of-
plane natural frequencies without introducing frequency splits into either the in-plane or the out-
of-plane modes. This is achieved if Eqs. (77)–(80) are satisfied. The problem of determining such
solutions is immediately simplified by applying trimming masses of identical magnitude at each
angular position and by fixing the angular positions of the trimming masses in a simple pattern,
such as by having uniformly spaced trimming masses. For such an arrangement of masses, it is
important to realise that certain numbers of uniformly spaced trimming masses ðNÞ can introduce
frequency splits into either the in-plane or out-of-plane modes and/or in-plane/out-of-plane
coupling.
Consider a set of N masses of equal magnitude, placed at the same radial distance from the

centre-line of the ring and positioned at regular intervals around the circumference of the ring,
such that the angular separation between neighbouring masses is 2p=N; see Fig. 7. It can be shown
[23] for this configuration that Eqs. (77)–(80) can only be satisfied if 2nI=N is not an integer and
2nO=N is not an integer.
Consider next the influence of the masses on the in-plane/out-of-plane coupling. By rearranging

Eq. (68) it can be shown that there will be no in-plane/out-of-plane coupling introduced to the
ring provided that X

i

miLiðcosðnO þ nI Þfi7cosðnO � nI ÞfiÞ ¼ 0; ð81Þ

X
i

miLiðsinðnO þ nI Þfi7sinðnO � nI ÞfiÞ ¼ 0: ð82Þ

There are a number of possible solutions to these equations. A trivial solution exists when Li is
equal to zero for each mass, i.e., each mass lies on the central plane of the ring. Alternatively, if Li
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is a non-zero constant, it can be shown that no coupling exists when N is not equal to ðnO þ nI Þ;
2ðnO þ nI Þ; ðnO � nI Þ or 2ðnO � nI Þ—assuming that the masses are identical and uniformly spaced.
So far it has been shown that it is possible to use a set of regularly spaced trimming masses to

modify the natural frequencies of the in-plane and out-of-plane modes of vibration without
introducing either frequency splits and/or in-plane/out-of-plane coupling. To determine the
trimming masses required to match the in-plane and out-of-plane natural frequencies, it is
necessary to consider the frequency that the modes are to be trimmed to by the second set of
trimming masses. The natural frequencies that the in-plane and out-of-plane modes are trimmed
to are given by Eqs. (74) and (75), respectively, where oI1 ¼ oI2 and oO1 ¼ oO2 are taken to be
the natural frequencies of the ring after Stage 1. Eq. (76) provides the relationship between the in-
plane and out-of-plane natural frequencies (after Stage 1), the second set of trimming masses and
their radial positions. Fixing the radial positions of the trimming masses, and setting the natural
frequencies after the first trimming process to be oI1 and oO1; the required magnitude of each of
the second set of N trimming masses can be shown to be

mi ¼
M

2n2
OhiNx

o2
I1

o2
O1

� 1


 �
: ð83Þ

The value of hi has been fixed at the same value for each mass, although no value has been
specified. Values for hi will be considered now. The initial difference between the in-plane and
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Fig. 7. Angular positions of N ¼ 7 uniformly spaced trimming masses.
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out-of-plane natural frequencies will be significant in the choice of radial positions. If oI1ooO1; a
positive value for hi would indicate that imperfection masses had been removed from the ring and
so require that the trimming masses are added to the ring, whilst a negative value would indicate
that imperfection masses had been added to the ring and so require that the trimming masses are
removed from the ring. Similarly, if oI1 > oO1; a positive value for hi would require that the
trimming masses are removed from the ring whilst a negative value would require that the
trimming masses are added to the ring.
In summary, a method for trimming the two in-plane and the two out-of-plane modes of

vibration to identical natural frequencies has been devised. The proposed method will be
demonstrated in the numerical examples that follow.

4. Numerical examples

Numerical examples will be used to verify the solutions to the proposed trimming methods
described in Section 3 and will be performed in three stages. In Stage 1, Eqs. (60)–(63) will be
solved to determine the magnitude and radial positions of the trimming masses needed to
eliminate the frequency splits from a pair of predominantly in-plane modes and a pair of
predominantly out-of-plane modes. In Stage 2, Eqs. (69)–(72) are solved to determine the axial
positions of the trimming masses arising from Stage 1 to eliminate the in-plane/out-of-plane
coupling. In Stage 3, Eq. (83) is used to determine the second set of N trimming masses, to match
the in-plane and out-of-plane natural frequencies. At each stage of the trimming process, the
natural frequencies and orientations of the four modes are calculated.
As in the earlier numerical example, the dimensions of the ring are taken to be r ¼ 8250 kg=m3;

R ¼ 0:0415 m; h ¼ 0:003 m and L ¼ 0:00105 m and it is assumed to be initially perfect with the
unsplit in-plane 2f modes having a natural frequency of 4000 Hz and the unsplit out-of-plane 3f
modes having a natural frequency of 4004 Hz: Applying two imperfection masses of 0.05% and
0.1% of the mass of the perfect ring M0 at 0	 and 35	; respectively, with each mass applied at a
corner with hi ¼ �h=2 and Li ¼ L=2; the in-plane and out-of-plane natural frequencies split. The
resulting in-plane modes have frequencies of 3997.837 and 3996:171 Hz with the higher frequency
mode orientated at �16:88	: The resulting out-of-plane modes have frequencies of 4002.648 and
4000:746 Hz with the lower frequency mode orientated at 8:97	: Throughout all stages of the
trimming process the N trimming masses are uniformly spaced around the circumference of the
ring and in the tabulated data the angular position of one mass, such as f2; can be found by
adding 2p=N onto the angular position of the previous mass, f1: The number of trimming masses
is chosen such that N ¼ 7 (see Fig. 7)—this choice of N ensures that identical, uniformly spaced
masses do not split the in-plane 2f modes and the out-of-plane 3f modes.

4.1. Stage 1. Elimination of the frequency splits from a pair of predominantly in-plane modes and a
pair of predominantly out-of-plane modes

Each row of Tables 1 and 2 shows results for the magnitude of the ðN ¼ 7Þ uniformly spaced
trimming masses required to perform Stage 1 of the trimming procedure. The trimming masses
indicated in Table 1 have been determined by fixing the radial position hi of each of the trimming
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masses at �h=2: The trimming masses shown in Table 2 have been determined by fixing the radial
position of each of the odd-numbered trimming masses at �h=2 and of each of the even-numbered
trimming masses at h=2: The trimming masses are presented as a percentage of the mass of the
original perfect ring. The trimming masses shown successfully eliminate the frequency splits of the
pair of predominantly in-plane and out-of-plane modes to the frequencies shown.
It can be seen from Table 1 that the modes can be trimmed simultaneously to a variety of

different frequencies—the results shown are obtained by varying the order in which the angular
positions are substituted into the relevant equations. In addition, comparing Tables 1 and 2 it can
be seen that varying the radial position of the trimming masses produce different sets of trimming
masses and trim the modes to different natural frequencies. Depending on the choice of radial
positions and the choice of the order in which the trimming masses are considered, it is possible to
vary the natural frequencies that the modes are trimmed to and it may be possible to trim the
modes to frequencies that are closer together or further apart than the initial splits. It can be seen
from the final columns of Tables 1 and 2 that the ratio of the trimmed in-plane natural frequency
to the trimmed out-of-plane natural frequency does not have a fixed value, although the variation
in the ratio is small for the trimming masses shown.
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Table 1

Simultaneous elimination of the frequency splits from a pair of in-plane and a pair of out-of-plane modes with

hi ¼ �h=2 for all trimming masses

f1 m1=M m2=M m3=M m4=M m5=M m6=M m7=M o0I o0O o0I=o0O

(rad) (%) (%) (%) (%) (%) (%) (%) (Hz) (Hz)

L1 L2 L3 L4 L5 L6 L7

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

0 0.033 �0.008 �0.046 0.007 �0.012 0.012 �0.007 3997.4 4002.0 0.9989

�1.215 2.311 0.788 1.543 �1.068 �1.068 1.543

2p=7 0.005 �0.047 �0.020 �0.014 0.025 �0.025 0.014 3998.2 4002.7 0.9989

�3.344 0.472 �1.473 �0.914 0.632 0.633 �0.914

4p=7 �0.052 �0.009 �0.021 0.011 �0.019 0.019 �0.011 3998.6 4003.0 0.9989

0.015 �2.478 �2.136 0.680 �0.471 �0.471 0.680

6p=7 �0.019 �0.035 0.057 0.004 �0.008 0.008 �0.004 3996.9 4001.7 0.9988

�2.037 �0.987 0.473 0.502 �0.348 �0.347 0.502

8p=7 �0.038 0.051 0.021 0.001 �0.002 0.002 �0.001 3996.3 4001.2 0.9988

�1.571 �0.079 0.860 �7.312 5.061 5.060 �7.313

10p=7 0.041 0.015 0.034 0.009 �0.015 0.015 �0.009 3995.2 4000.3 0.9987

0.175 �0.831 �0.543 �2.045 1.415 1.415 �2.045

12p=7 0.031 0.032 �0.024 �0.017 0.031 �0.031 0.017 3996.2 4001.1 0.9988

�1.597 0.030 2.584 0.365 �0.253 �0.253 0.365

0 0.056 �0.011 �0.054 0.028 0 0 0 3996.6 4001.4 0.9988

�0.914 �1.080 1.097 1.543

0 0.007 �0.039 �0.042 0 �0.050 0 0 3999.5 4003.6 0.9990

0.233 0.776 �0.408 �1.067

0 0.029 0.023 �0.020 0 0 0.050 0 3995.4 4000.4 0.9987

�3.268 �0.289 3.945 �1.068

0 0.041 �0.005 �0.070 0 0 0 �0.028 3998.2 4002.6 0.9989

�0.424 10.754 0.365 1.543
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4.2. Stage 2. Elimination of the in-plane/out-of-plane coupling

Tables 1 and 2 also include the axial positions of the required trimming masses to eliminate the
in-plane/out-of-plane coupling. To determine the coupling, the in-plane sensor is aligned for all
four equations at fpi ¼ jnO

; which is a valid position for the sensor as it is not a nodal position for
either of the in-plane generalized co-ordinates. The coupling is calculated using the original
imperfection masses using Eqs. (65) and (66), and the axial positions are calculated using
Eqs. (69)–(73). For clarity, the axial positions shown in Tables 1 and 2 have been recorded in
millimetres and should be compared with the axial distance from the centre of the ring to its upper
and lower surfaces, which is 0:525 mm:
In principle, if the trimming masses are placed at these axial positions, the in-plane/out-of-plane

coupling is eliminated from all four modes of vibration, leaving a pair of purely in-plane modes
and a pair of purely out-of-plane modes. The applicability of the presented axial positions are
limited because they do not lie on the surface of the ring. It can be noted that most of the axial
positions are outside the cross-section of the ring and many of them are at a significant distance
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Table 2

Simultaneous elimination of the frequency splits from a pair of in-plane and a pair of out-of-plane modes with

hi ¼ �h=2 for all odd-numbered trimming masses and hi ¼ h=2 for all even-numbered trimming masses

f1 m1=M m2=M m3=M m4=M m5=M m6=M m7=M o0I o0O o0I=o0O

(rad) (%) (%) (%) (%) (%) (%) (%) (Hz) (Hz)

L1 L2 L3 L4 L5 L6 L7

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

0 0.034 �0.0005 �0.041 0.006 �0.012 0.015 �0.007 3997.1 4001.6 0.9989

�1.174 38.617 0.893 1.917 �1.068 �0.860 1.543

2p=7 0.011 �0.046 �0.022 �0.011 0.025 �0.032 0.014 3998.2 4003.4 0.9987

�1.360 0.484 �1.333 �1.136 0.632 0.510 �0.914

4p=7 �0.051 0.002 �0.013 0.009 �0.019 0.024 �0.011 3998.2 4002.3 0.9990

0.015 12.575 �3.495 0.845 �0.471 �0.379 0.680

6p=7 �0.014 �0.022 0.064 0.003 �0.008 0.009 �0.004 3996.4 4001.3 0.9988

�2.767 �1.528 0.417 0.624 �0.347 �0.280 0.502

8p=7 �0.046 0.039 0.014 0.001 �0.002 0.003 �0.001 3996.8 4001.2 0.9989

�1.316 �0.104 1.258 �9.093 5.065 4.081 �7.319

10p=7 0.039 0.018 0.037 0.007 �0.015 0.019 �0.009 3995.1 3999.8 0.9988

0.185 �0.704 �0.496 �2.541 1.415 1.410 �2.045

12p=7 0.026 0.010 �0.040 �0.014 0.031 �0.039 0.017 3997.2 4002.2 0.9987

�1.886 0.094 1.574 0.454 �0.253 �0.204 0.365

0 0.062 �0.007 �0.058 0.022 0 0 0 3996.6 4001.3 0.9988

�0.831 �1.847 1.021 1.917

0 0.012 �0.029 �0.036 0 �0.050 0 0 3999.1 4003.5 0.9989

0.126 1.048 �0.471 �1.068

0 0.022 0.037 �0.0001 0 0 0.062 0 3994.6 3999.0 0.9989

�4.359 �0.179 650.6 �0.860

0 0.042 �0.003 �0.069 0 0 0 0 �0.028 3998.2 4002.6 0.9989

�0.417 14.520 0.369 1.543
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from the surface. For this practical reason, it is necessary to modify the axial positions of the
trimming masses.
There are three possible methods of modifying the axial positions: (i) the individual trimming

masses can be split into two masses and applied on opposite faces of the ring; (ii) larger trimming
masses can be calculated using a modified form of Eqs. (63) and (64); (iii) the axial positions can
be adjusted by modifying Eqs. (69)–(73). Each of these methods are considered next.
(i) Division of the trimming masses into pairs of trimming masses: Dividing the trimming masses

into pairs of trimming masses is possible because the in-plane/out-of-plane coupling is linearly
dependent on the axial position Li of the masses, and the natural frequencies of the predominantly
out-of-plane modes are approximately linearly dependent on the radial positions of the masses.
Thus, if a trimming mass mi is required to be removed from inside the ring (for example at
�L=2oLioL=2), the same effect can be achieved by applying two masses on opposite faces of the
cross-section of the ring (at 7L=2) with the size of the two masses, miþ and mi�; given by

miþL

2
�

mi�L

2
¼ miLi and miþ þ mi� ¼ mi: ð84; 85Þ

Consider the effect of doing this for the example considered. Table 3 records the magnitude of the
14 trimming masses that would result from applying Eqs. (84) and (85) to the trimming masses of
Table 1. miþ and mi� indicate the masses that would be applied at axial positions of L=2 and
�L=2; respectively at angular position fi: Comparing Tables 1 and 3, it can be seen, as expected,
that the effective trimming mass applied at each angular position has not increased, although the
overall magnitude of the two trimming masses may be larger than the original mass if the original
mass was to be placed outside of the cross-section of the ring.
The trimming masses shown in Table 3 can be used in a practical process to simultaneously

eliminate the frequency splits of the predominantly in-plane and out-of-plane modes and the in-
plane/out-of-plane coupling. This is demonstrated in Fig. 8, which has been formed by applying
the two imperfection masses and the last set of trimming masses recorded in Table 3 (the set with
the 0.004% and 0.037% masses applied at 0 radians) incrementally to the perfect ring and
calculating the natural frequencies and mode shapes at each stage. This was done to investigate
how far the mode shapes deviate from being purely in-plane and out-of-plane as the original
imperfection masses are added to the perfect ring and then how closely the trimming masses
return the modes to being purely in-plane or out-of-plane. For continuity, in Fig. 8 both stages
have been shown in the same graph. In Fig. 9, this will be taken one stage further to include the
trimming of the in-plane and out-of-plane modes to the same natural frequency.
Fig. 8 consists of five separate figures. Figs. 8(a)–(d) represent the eigenvectors. The proportion

of the mode shape along the two in-plane and two out-of-plane generalized co-ordinates is
represented in the four curves. In each of Figs. 8(a)–(d), only three of the four generalized co-
ordinates can be seen due to the vertical scale. The displacement of the fourth generalized co-
ordinate, at approximately unity, is significantly larger than those of the other three generalized
co-ordinates and indicates the predominant contribution to each mode. For each mode, the sum
of the square of the displacements along each generalized co-ordinate at a specific frequency is
equal to unity.
Fig. 8(e) shows the natural frequencies of the four modes shown in Figs. 8(a)–(d). It can be seen

that there are two sets of curves in Fig. 8(e); one solid, one dashed. The two sets have been
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included to demonstrate the validity of neglecting the terms involving h2
i and L2

i from the
calculations of the out-of-plane natural frequencies (see Eqs. (27) and (31)). The dashed curves are
the approximate solutions, whilst the solid curves are the exact solutions. There is a small
difference in the results, the exact solution has a slightly lower frequency, but over the entire
trimming procedure it can be seen that the difference has a negligible effect. For this reason, it is
reasonable to neglect terms involving h2

i and L2
i in Eqs. (27) and (31).

In the first half of each of the Figs. 8(a)–(e), the magnitude of the imperfection masses applied
to the ring increases from 0% to 100% with no trimming masses applied at any point. The ratio of
the two imperfection masses is constant throughout. It can be seen from Figs. 8(a)–(d) that as the
size of the imperfection masses increases, the size of the in-plane/out-of-plane coupling of each
mode increases and, from Fig. 8(e), that the frequency splits of the predominantly in-plane and
out-of-plane modes increase.
In the second half of Figs. 8(a)–(e), the magnitude of the trimming masses applied to the ring

increases from 0% to 100% with the imperfection masses applied at every point. The ratio of the
eight trimming masses is constant throughout. It can be seen that as the size of the trimming
masses increase, the size of the in-plane/out-of-plane coupling decreases and the frequency splits
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Table 3

Simultaneous elimination of the frequency splits from a pair of in-plane and a pair of out-of-plane modes with

hi ¼ �h=2 for all trimming masses

f1 m1þ=M m2þ=M m3þ=M m4þ=M m5þ=M m6þ=M m7þ=M

(rad) (%) (%) (%) (%) (%) (%) (%)

m1�=M M2�=M M3�=M M4�=M M5�=M M6�=M M7�=M

(%) (%) (%) (%) (%) (%) (%)

0 �0.022 �0.022 �0.058 0.014 0.006 �0.006 �0.014

0.055 0.014 0.012 �0.007 �0.019 0.017 0.007

2p=7 �0.012 �0.045 0.018 0.005 0.028 �0.028 �0.005

0.017 �0.002 �0.038 0.017 �0.003 0.003 0.019

4p=7 �0.027 0.017 0.032 0.012 �0.001 0.001 �0.012

�0.026 �0.026 �0.052 �0.002 �0.019 �0.018 0.002

6p=7 0.027 0.015 0.054 0.004 �0.001 0.001 �0.004

�0.046 �0.050 0.003 0.00009 �0.006 0.006 �0.00009

8p=7 0.038 0.022 0.028 �0.008 �0.012 0.012 0.008

�0.076 0.030 �0.007 0.009 0.010 �0.010 �0.009

10p=7 0.027 �0.004 �0.0006 �0.012 �0.028 0.028 0.012

0.014 0.020 0.034 0.021 0.013 �0.013 �0.021

12p=7 �0.031 0.017 �0.072 �0.015 0.008 �0.008 0.015

0.062 0.015 0.048 �0.003 0.023 �0.023 0.003

0 �0.021 0.006 �0.084 0.054 0 0 0

0.077 �0.017 0.030 �0.027

0 0.005 �0.048 �0.005 0 0.026 0 0

0.002 0.009 �0.037 �0.075

0 �0.075 0.005 �0.085 0 0 �0.026 0

0.104 0.018 0.065 0.075

0 0.004 �0.049 �0.059 0 0 0 �0.054

0.037 0.045 �0.011 0.027
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Fig. 8. (a)–(d) In-plane and out-of-plane displacements of the in-plane and out-of-plane modes under trimming using

the last trimming masses in Table 3. (e) Natural frequencies of the (predominantly) in-plane and out-of-plane modes of

vibration under trimming using the last trimming masses in Table 3.
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Fig. 9. (a)–(d) In-plane and out-of-plane displacements of the in-plane and out-of-plane modes under trimming using

the second set of trimming masses in Table 4. (e) Natural frequencies of the (predominantly) in-plane and out-of-plane

modes of vibration under trimming using the second set of trimming masses in Table 4.
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also decrease. Thus, the process of eliminating the effect of imperfections from a pair of
predominantly in-plane and out-of-plane modes has been demonstrated.
(ii) Modification of the magnitudes of the trimming masses (Eqs. (60)–(64)): For situations when

the calculated trimming mass is located outside of the cross-section of the ring, splitting the
trimming mass into a pair of trimming masses will yield one mass that needs to be added to the
ring and one that needs to be removed from the ring. This can be problematic if the trimming
process is only capable of adding or removing mass. This problem can be solved by considering
the magnitude of the trimming masses.
One reason that the trimming masses need to be placed outside the cross-section of the ring is

that the trimming masses are small in comparison with the original imperfection masses. Consider
Table 1 and specifically the last set of trimming masses (last row), which were used to produce Fig.
8. The largest trimming masses (0.041% and �0:070%) are comparable in size to the two
imperfection masses, and these masses are located within the cross-section of the ring. The other
two trimming masses are smaller and are located outside of the ring. Indeed, one mass is
significantly smaller than the other masses and this is located at a significant distance from the
surface of the ring. Thus, it can be seen that smaller masses need to be placed at greater distances
from the centre of the ring to satisfy Eqs. (69)–(73).
Thus, if the trimming process can only accommodate the addition or the removal of mass, it is

necessary to increase the magnitude of each of the trimming masses. This can be achieved by
modifying Eqs. (64) for masses mi and mj; where 4pi; jpN; such that

mi ¼
ðM � aÞ
ðN � 3Þ

tX
ki

and mj ¼
ðM þ aÞ
ðN � 3Þ

tX
kj

; ð86; 87Þ

where a is a constant value that is independent of the properties of the ring and the trimming
masses and iaj: This modification can be used to produce larger or smaller trimming masses and
has been used previously [20] to produce trimming masses that are all of the same sign.
For example consider Table 4. The first seven solutions in Table 4 have been formed from Table

1 by setting a ¼ 0:005; i ¼ 4 and 7 and j ¼ 5 and 6 in Eqs. (86) and (87). The remaining three
solutions have been generated by nullifying masses 4 and 7, replacing the 3 in Eqs. (86) and (87)
by 5, setting i ¼ 6; j ¼ 5 and, in turn, a ¼ 0:005; 0.006 and 0.007. Comparing Tables 1 and 4, it
can be seen that the magnitude of the trimming masses has increased and that the axial positions
have, in general, decreased. Indeed, most of the trimming masses now occur within the cross-
section of the ring. There are some exceptions but these are to be expected as the choices of the
masses to modify and the values of a were arbitrary.
The final three sets of trimming masses have been included for two reasons. Firstly, to illustrate

that as the value of a increases, the size of all the trimming masses may increase, whilst the axial
distances of all the trimming masses from the centre-line of the cross-section of the ring will
decrease, which has a significant effect on the natural frequencies. Considering the in-plane and
out-of-plane natural frequencies, it can be seen that the difference between them increases as a
increases, which means that larger trimming masses will be required to match the in-plane and
out-of-plane natural frequencies. This can be compensated for by choosing different radial
positions for the original set of trimming masses. In each of the three sets shown, the angular
position of mass m1 was 0 radians.
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Secondly, by not distributing the trimming masses evenly around the circumference of the ring,
the total size of the trimming mass applied to the ring can be reduced. Compare the set of
trimming masses applied at f1 ¼ 6p=7 and 8p=7 with the last three sets of trimming masses. The
reason that larger masses are required when the trimming masses are evenly distributed around
the circumference of the ring is that the coupling introduced by individual trimming masses is
largely negated by the other trimming masses. This is the principle that can be used to eliminate
the frequency split between the in-plane and out-of-plane modes without introducing coupling.
Therefore, only a small proportion of the coupling introduced by the trimming masses will remain
unbalanced and it is this small proportion that negates the coupling introduced by the
imperfection masses.
Fig. 9 shows the solutions to an incremental application of the second set of trimming masses in

Table 4 (the set with the �0:090%mass at 2p=7 radians). Considering only the first two sections of
Fig. 9, it can be seen that the in-plane and out-of-plane frequency splits and the in-plane/out-of-
plane coupling have again been successfully eliminated. Thus, Eqs. (86) and (87) can be used to
produce larger trimming masses, applied within the cross-section of the ring, that will successfully
trim the ring.
(iii) Modification of the axial positions (Eqs. (69)–(73)): This method for modifying the axial

positions of the trimming masses involves making a modification to Eq. (73) similar to that made
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Table 4

Simultaneous elimination of the frequency splits from a pair of in-plane and a pair of out-of-plane modes with

hi ¼ �h=2 for all trimming masses

f1 m1=M m2=M m3=M m4=M m5=M m6=M m7=M o0I o0O o0I=o0O

(rad) (%) (%) (%) (%) (%) (%) (%) (Hz) (Hz)

L1 L2 L3 L4 L5 L6 L7

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

0 0.103 �0.094 0.023 0.058 0.080 0.104 0.044 3987.0 3994.0 0.9983

�0.394 �0.196 �1.610 0.184 0.167 �0.127 �0.241

2p=7 �0.090 �0.187 �0.114 �0.084 �0.100 �0.151 �0.056 4012.7 4013.8 0.9997

0.172 0.119 �0.253 �0.153 �0.160 0.106 0.231

4p=7 �0.695 �0.957 �0.664 �0.463 �0.873 �0.835 �0.485 4099.9 4081.4 1.0045

0.001 �0.023 �0.065 �0.015 �0.010 0.011 0.015

6p=7 0.162 0.233 0.238 0.138 0.233 0.249 0.130 3969.7 3980.6 0.9973

0.239 0.148 0.113 0.015 0.011 �0.011 �0.016

8p=7 0.766 1.237 0.826 0.594 1.066 1.071 0.591 3879.8 3911.5 0.9919

0.079 �0.003 0.022 �0.016 �0.011 0.011 0.016

10p=7 �0.198 �0.337 �0.205 �0.168 �0.333 �0.302 �0.185 4031.9 4028.6 1.0008

�0.036 0.037 0.088 0.103 0.065 �0.072 �0.094

12p=7 �0.173 �0.268 �0.228 �0.168 �0.240 �0.302 �0.133 4027.5 4025.3 1.0006

0.283 �0.004 0.275 0.038 0.033 �0.026 �0.048

0 0.100 0.221 0.051 0 0.159 0.209 0 3928.3 3990.4 0.9980

�0.465 �0.084 �0.605 0.167 �0.127

0 0.116 0.267 0.067 0 0.196 0.245 0 3979.4 3988.1 0.9978

�0.400 �0.069 �0.458 0.136 �0.108

0 0.132 0.313 0.084 0 0.233 0.282 0 3976.4 3985.8 0.9976

�0.350 �0.059 �0.368 0.114 �0.094
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to Eq. (64) by Eqs. (86) and (87). Specifically, for iaj and 4pi; jpN; axial positions Li and Lj can
be modified to

Li ¼
W2G1ðm3Þ � W1G2ðm3Þ � b

ðN � 3ÞðG1ðm3ÞG2ðmiÞ � G2ðm3ÞG1ðmiÞÞ
;

Li ¼
W2G1ðm3Þ � W1G2ðm3Þ þ b

ðN � 3ÞðG1ðm3ÞG2ðmiÞ � G2ðm3ÞG1ðmiÞÞ
; ð88; 89Þ

where b is a constant value that is independent of the properties of the ring and the trimming
masses. It is unlikely that it will be possible to reduce the axial positions of all of the trimming
masses using this method alone. Instead, it could be used in conjunction with the other methods.
For example, the first of the five mass solutions in Table 4 (the set with the 0.100% mass at

position 1) has a single trimming mass outside of the cross-section of the ring, specifically at an
axial position of �6:05 mm: Using Eqs. (88) and (89), the axial positions of the five masses,
reading from left to right, can be modified to �0:146; �0:119; 0.021, 0.278 and �0:043 mm
without changing the size of any of the masses.
(iv) General solution: Consider Figs. 10(a) and (b). These have been generated from Eq. (67)

using the same data that generated Fig. 9 with the exception that the out-of-plane angular
positions, fpo; were taken to be 15	 and 45	; i.e., the out-of-plane sensors are no longer aligned
with the out-of-plane generalized co-ordinates. With this alignment of the sensors and generalized
co-ordinates, the analytical method previously used to determine the axial positions cannot be
used. Instead, a graphical solution to Eq. (67) is required. Fig. 10(a) shows the initial curves that
can be formed by varying the axial position of each of the trimming masses between 7L=2 (i.e.,
70:525 mm), whilst maintaining the axial position of the other trimming masses at L=2: It can be
seen that some of the curves have a minimum value at L=2 whilst other curves have a minimum
within the range considered. By determining the axial position of the trimming mass at which the
minimum of Fig. 10(a) occurs and fixing the axial position of the relevant trimming mass, a
further set of curves can be generated with a new set of minima. This process would continue until
a minimum is found with respect to all trimming masses such as the situation shown in Fig. 10(b),
which has been generated using the axial positions calculated by the previous method to fix the
positions of the trimming masses that are not being varied in each curve.
Thus, it has been shown that the methods derived in Section 3.2 to eliminate the in-plane/out-

of-plane coupling can be applied successfully.

4.3. Matching the in-plane and out-of-plane natural frequencies

Consider the problem of matching the in-plane and out-of-plane natural frequencies without
introducing coupling into the ring. This can be observed from the final third of Fig. 9. After the
first set of trimming masses were applied to the ring, the in-plane modes had a natural frequency
of 4012:7 Hz whilst the out-of-plane modes had a natural frequency of 4013:8 Hz according to the
approximate solutions. Including the effect of h2i and L2

i ; it can be seen, from Fig. 9(e), that there is
a small difference between the exact and approximate out-of-plane natural frequencies, of about
0:1 Hz: The size of the second set of trimming masses will be determined from the approximate
solutions, which is the reason that it takes 100% of the second set of trimming masses to match
the approximate in-plane and out-of-plane natural frequencies but 110% to match the exact
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in-plane and out-of-plane natural frequency. However, even at 100% of the trimming masses the
difference between the exact in-plane and out-of-plane natural frequencies is 0:1 Hz; which is a
difference of less than 0.01%.
To produce the final third of Fig. 9, seven regularly spaced trimming masses were removed from

the ring. The magnitude of these seven masses were calculated using Eq. (83) with the radial
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Fig. 10. (a) Initial set of solutions to Eq. (67) for the second set of trimming masses in Table 4 with variations in

the axial positions Li ð&;L1;};L2;W;L3;�;L4;þ;L5;�;L6;J;L7Þ: Lj ¼ L=2 if jai: (b) Final set of solutions to

Eq. (67) for the second set of trimming masses in Table 4 with variations in the axial positions

Li ð&;L1;};L2;W;L3;�;L4;þ;L5;�;L6;J;L7Þ: The value of Lj is given in Table 4 if jai:
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position of the masses being �h=2 and so the second set of trimming masses each need to be
0.0351% of the mass of the trimmed ring, or 0.0349% of the mass of the perfect ring. The masses
were all attached to the ring at an axial position of 0 so as to introduce no additional coupling
between the in-plane and out-of-plane generalized co-ordinates. In the final third of Fig. 9, the
proportion of the trimming masses applied to the ring is increased from 0% to 100% with 100%
of the imperfection masses applied at every point and the trimming masses from Stage 1 also
applied at every point.
It can be seen from Figs. 9(a)–(d) that some coupling between the in-plane and out-of-plane

generalized co-ordinates will reappear as the difference between the in-plane and out-of-plane
natural frequency decreases. This is because the curves have been generated using approximate
solutions, not exact solutions. However, as has already been noted, the difference between the in-
plane and out-of-plane natural frequencies is small, i.e., less than 0.01%, by the point that the
coupling becomes significant, as can be seen from Fig. 9(e).
Hence, it has been shown that it is possible to eliminate the frequency splits between the in-

plane and out-of-plane modes of vibration whilst maintaining the predominantly in-plane and
out-of-plane nature of the two pairs of modes.

5. Conclusions

A method for eliminating natural frequency splits between a pair of in-plane modes
and a pair of out-of-plane modes of an imperfect ring has been proposed. In contrast to
previous work, account has been taken of any coupling between the in-plane and out-of-plane
modes, ensuring that the trimmed modes are pure in-plane and pure out-of-plane modes.
The proposed mass trimming method is performed in 3 stages. Stage 1 eliminates the
frequency split between a pair of predominantly in-plane modes and a pair of predominantly
out-of-plane modes. Stage 2 eliminates any cross-coupling between the in-plane and out-of-plane
modes. Stage 3 matches all four of the in-plane and out-of-plane natural frequencies
together. Numerical results indicate that it is theoretically possible to trim the natural frequencies
using the proposed method. Further work is needed to experimentally validate the proposed
method.
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Appendix A

zij ¼ð1þ 2hin
2
OxÞ sin 2nI ðfj � jnI

Þ sin 2nOðfi � jnO
Þ

� ð1þ 2hjn
2
OxÞ sin 2nI ðfi � jnI

Þ sin 2nOðfj � jnO
Þ; ðA:1Þ
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wi ¼ð1þ 2h1n
2
OxÞ sin 2nI ðf2 � fiÞ sin 2nOðf1 � jnO

Þ

þ ð1þ 2h2n
2
OxÞ sin 2nI ðfi � f1Þsin 2nOðf2 � jnO

Þ

þ ð1þ 2hin
2
OxÞ sin 2nI ðf1 � f2Þ sin 2nOðfi � jnO

Þ; ðA:2Þ

ki ¼ X1ðz2iw3 � z23wiÞ;

þX2ðzi1w3 � z31wiÞ;

�X3z12wi þ xiz12w3;

tX ¼ z12
LnO

w3
�lnI

ðX1z23 þ X2z31 þ X3z12Þ

 !
; ðA:3;A:4Þ

GI1O1 ¼ �mi cos nI ðfi � jnI
Þ cos nOðfi � jnO

Þ; ðA:5Þ

GI1O2 ¼ �mi cos nI ðfi � jnI
Þ sin nOðfi � jnO

Þ; ðA:6Þ

GI2O1 ¼ mi sin nI ðfi � jnI
Þ cos nOðfi � jnO

Þ; ðA:7Þ

GI2O2 ¼ mi sin nI ðfi � jnI
Þ sin nOðfi � jnO

Þ; ðA:8Þ

WI1O1 ¼
V ðFI1;jnO

Þ
W ðFI1;fpiÞ

ðMO1 þ mO1Þ
n2

Ox
ððo2

O1 � o2Þ2 þ 4o2o2
O1g

2
O1Þ

1=2

o2
cos nI ðfpi � jnI

Þ; ðA:9Þ

WI1O2 ¼
V ðFI1;jnO

þ p=2nOÞ
W ðFI1;fpiÞ

ðMO2 þ mO2Þ
n2Ox

ððo2
O2 � o2Þ2 þ 4o2o2

O2g
2
O2Þ

1=2

o2
cos nI ðfpi � jnI

Þ; ðA:10Þ

WI2O1 ¼
V ðFI2;jnO

Þ
W ðFI2;fpiÞ

ðMO1 þ mO1Þ
n2

Ox
ððo2

O1 � o2Þ2 þ 4o2o2
O1g

2
O1Þ

1=2

o2
sin nI ðfpi � jnI

Þ; ðA:11Þ

WI2O2 ¼
V ðFI2;jnO

þ p=2nOÞ
W ðFI2;fpiÞ

ðMO2 þ mO2Þ
n2Ox

ððo2
O2 � o2Þ2 þ 4o2o2

O2g
2
O2Þ

1=2

o2
sin nI ðfpi � jnI

Þ; ðA:12Þ

GkðmiÞ ¼GI1O1ðmiÞðGI1O2ðm1ÞGI2Okðm2Þ � GI2Okðm1ÞGI1O2ðm2ÞÞ

þ GI1O2ðmiÞðGI2Okðm1ÞGI1O1ðm2Þ � GI1O1ðm1ÞGI2Okðm2ÞÞ

þ GI2OkðmiÞðGI1O1ðm1ÞGI1O2ðm2Þ � GI1O2ðm1ÞGI1O1ðm2ÞÞ; ðA:13Þ

Wk ¼ WI1O1ðGI1O2ðm1ÞGI2Okðm2Þ � GI2Okðm1ÞGI1O2ðm2ÞÞ

þ WI1O2ðGI2Okðm1ÞGI1O1ðm2Þ � GI1O1ðm1ÞGI2Okðm2ÞÞ

þ WI2OkðGI1O1ðm1ÞGI1O2ðm2Þ � GI1O2ðm1ÞGI1O1ðm2ÞÞ: ðA:14Þ
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